
Web Security Threats

Giuseppe Paternò
February 2004

AgendaAgenda

● Objective of the presentation
● Why firewalls are ineffective
● Application security
● Known attacks
● Some suggestions

What I am here forWhat I am here for

● I don't want to create security guys
● I don't want to teach you how to program

or configure a product
● I want to make sure you're aware of

what's “out there” about cracking

Firewalls are deathFirewalls are death

● “Have you got any security issue? Then you
need a firewall” (sales men in 2k)

● The web is going to be the only available
service to the Internet (along mail and
DNS)
– Newer attacks will be propagated through the

web
– If HTTP is the way to exploit a remote

network, what is IP filtering for ?
● Goodbye to firewalls

Security in applicationsSecurity in applications

● Security should be set at application layer
● If attacks are now at the application layer,

the only way to protect is:
– To configure the application properly

(webserver, directory server, application
server)

– To “code” (i.e. program) in such a way that is
difficult for an intruder to break in or to gain
more privileges

Known threatsKnown threats

● Current techniques to exploiting a web
application (it also applies to webservices)
– Default configuration
– Buffer overflow
– RootKits
– HTML code injection
– Error handling
– SQL/LDAP/XML injection
– Social engineering (not really technical, but...)

Default configurationDefault configuration

● Configuring an application with defaults is
the worst enemy
– For example using user “root” password “root”

on an Unix system
● Configure the application properly, eg:

– Change default passwords
– Give least access to the server (not let them

running as root)
– Using ACLs in LDAP to prevent information

evasdropping
– Restrict list of allowable IP addresses

Buffer overflowBuffer overflow

● It has been discovered in mid 1990 and
it's a common technique today

● It exploits an unchecked buffer size in
programs and overwrites the program
code, so that it points to a different
memory address and execute a shell on the
remote OS.
– www.linuxjournal.com/article.php?sid=6701

Buffer overflowBuffer overflow

● The buffer overflow theory
/* note that the size of the buffer is 256 bytes, but the loop
inserts 512 bytes of data */

void func(void) {
int i;
char buffer[256];
for (i=0; i<512 ; i++)

buffer[i] = 'x';
return;

}

Buffer overflowBuffer overflow

● Buffer overflows are often used by
malicious programs named as exploits

● Java usually do not suffers of buffer
overflows
– Better, it has not been proven yet
– Theoretically it can be done where buffers has

been used inside a program (socket listening)
– The attack can be addressed to the JVM and

not to the program itself

RootKitsRootKits

● A collection of tools that allows a cracker
to provide a backdoor into a system,
collect information on other systems on
the network, mask the fact that the
system is compromised, and much more.
Rootkit is a classic example of Trojan
Horse software.

● Eg: Adore, T0rn, etc... (also avalable for
Windows)

HTML Code InjectionHTML Code Injection

● Attackers are often able to embed
malicious HTML-based content within
client web requests. Attackers can exploit
these flaws by embedding scripting
elements (JavaScript) within the returned
content without the knowledge of the sites
visitor, for example to inject a trojan
horse.
– www.technicalinfo.net/papers/CSS.html

URL poisoning / File inclusionURL poisoning / File inclusion

● Sometimes applications loads external
files or external URLs, for example:

link.jsp?url=http://www.mysite.com
include.jsp?page=mypage.jsp

● Check always the input: this can be
modified by an intruder as

link.jsp?url=file:///etc/passwd
include.jsp?page=../../../etc/passwd

Error handlingError handling

● Displaying errors are used mostly for
debugging/troubleshooting

● Error handling are “false friends”
– Used by attackers to reveal how the web site

is structured: most of the times are used to
understand database tables and how queries
are structured (and do SQL injection)

● Suggestion: give minimal error to user and
log to a file (log4j).

Error handlingError handling

● Example:
http://www.mycompany.com/product.php?id=1829249837394

Error at line 125: Unable to perform query: select Date,Object
from where Date > NOW() - INTERVAL 1 YEAR order by Date
:You have an error in your SQL syntax near 'where Date >
NOW() - INTERVAL 1 YEAR order by Date' at line 1

● It reveals:
–Database tables (two queries)
–Which line of the code is in error

(line 125)

SQL injectionSQL injection

● It is a trick to inject SQL query/command
as form input.

● Many web pages take parameters from
user, and make SQL query to the
database.
– Eg: web login page with user name and

password and make SQL query to the
database.

– With SQL Injection, it is possible for us to
send crafted user name and/or password

SQL injectionSQL injection

● Example FORM posting to:
https://www.mycompany.com/servlet/login?userid=shmoe&passw

ord=dumb

● I could write it as:
https://www.mycompany.com/servlet/login?userid=shmoe&passw

ord=letmein'%20OR%20'a'='a

● The last “OR 'a'='a” makes SQL
statement true, bypassing security.

“SELECT * from passwords where user='” + username + “' and
password='” + password +”';”

SQL injectionSQL injection

● SQL injection can be done on any
queries
– Search forms, web forms in general and even XML files

(web services)

● You can load/modify system files
– Password files, configuration files, etc..

● You can spawn external processes
– Opening backdoors

LDAP injectionLDAP injection

● Similar to SQL injection
● It is quite uncommon, but possible
● Example:

https://www.mycompany.com/login.jsp&user=gipp
a&password=letmein)(|(cn=*))

Some suggestionsSome suggestions

● If you are going to install software or
maintain a test site:

● Avoid default configurations
● Change passwords

– Please do not use easy-to-guess password
● Do not let applications run as root
● Keep patches up-to-date
● Use “in-deep security” philosophy

Some suggestionsSome suggestions

● If you are going to write code:
● Never trust user input (it also applies to

XML in web services)
– Always check fields for invalid characters such

as & ; ` ' \ " | * ? ~ < > ^ () [] { } $ \n \r
– ... and escape them
– Check input length

● Encrypt data and use safe connections
● Give the user the least privileges to access

data

But remember:
there is no 100% security!

(Gippa is watching you!)

Thank you!

Giuseppe Paternò
gpaterno@gpaterno.com

